<dl id="rtd9b"><output id="rtd9b"><output id="rtd9b"></output></output></dl>
<video id="rtd9b"></video>
<video id="rtd9b"><dl id="rtd9b"><output id="rtd9b"></output></dl></video><video id="rtd9b"></video>
<dl id="rtd9b"></dl>
<video id="rtd9b"><dl id="rtd9b"><delect id="rtd9b"></delect></dl></video>
<dl id="rtd9b"></dl>
<video id="rtd9b"></video>
<dl id="rtd9b"></dl><video id="rtd9b"></video>
<video id="rtd9b"></video><video id="rtd9b"></video><dl id="rtd9b"></dl><delect id="rtd9b"><dl id="rtd9b"><font id="rtd9b"></font></dl></delect><delect id="rtd9b"></delect>
<dl id="rtd9b"><delect id="rtd9b"><font id="rtd9b"></font></delect></dl>
<dl id="rtd9b"></dl>
<dl id="rtd9b"><output id="rtd9b"><font id="rtd9b"></font></output></dl>
<noframes id="rtd9b"><delect id="rtd9b"><noframes id="rtd9b">
<dl id="rtd9b"></dl>
<video id="rtd9b"></video>
<dl id="rtd9b"><output id="rtd9b"></output></dl>
<output id="rtd9b"></output>
<address id="rtd9b"></address>
<dl id="rtd9b"><output id="rtd9b"><font id="rtd9b"></font></output></dl>
<video id="rtd9b"><dl id="rtd9b"></dl></video>
<video id="rtd9b"><output id="rtd9b"><font id="rtd9b"></font></output></video><video id="rtd9b"></video>
<video id="rtd9b"></video>
<video id="rtd9b"><dl id="rtd9b"></dl></video>
<video id="rtd9b"></video>
<video id="rtd9b"><dl id="rtd9b"></dl></video>
<noframes id="rtd9b"><video id="rtd9b"></video>
<dl id="rtd9b"><delect id="rtd9b"><font id="rtd9b"></font></delect></dl><video id="rtd9b"><dl id="rtd9b"><output id="rtd9b"></output></dl></video>
<video id="rtd9b"><output id="rtd9b"><font id="rtd9b"></font></output></video>
<dl id="rtd9b"><delect id="rtd9b"><font id="rtd9b"></font></delect></dl><video id="rtd9b"></video>
<dl id="rtd9b"><output id="rtd9b"><delect id="rtd9b"></delect></output></dl>
<video id="rtd9b"><dl id="rtd9b"><output id="rtd9b"></output></dl></video>
<video id="rtd9b"></video>
<video id="rtd9b"></video>
<video id="rtd9b"><dl id="rtd9b"><delect id="rtd9b"></delect></dl></video>
<video id="rtd9b"><output id="rtd9b"></output></video>
<video id="rtd9b"><output id="rtd9b"></output></video>
<dl id="rtd9b"><delect id="rtd9b"></delect></dl>
<video id="rtd9b"><dl id="rtd9b"><output id="rtd9b"></output></dl></video><dl id="rtd9b"></dl>
<video id="rtd9b"><output id="rtd9b"></output></video>
<output id="rtd9b"><delect id="rtd9b"><meter id="rtd9b"></meter></delect></output>
<video id="rtd9b"><dl id="rtd9b"></dl></video>
<video id="rtd9b"></video>
<dl id="rtd9b"></dl>
<dl id="rtd9b"><output id="rtd9b"><font id="rtd9b"></font></output></dl><video id="rtd9b"></video>
<noframes id="rtd9b">
<video id="rtd9b"></video>
<dl id="rtd9b"><output id="rtd9b"><meter id="rtd9b"></meter></output></dl><video id="rtd9b"><output id="rtd9b"></output></video>
<video id="rtd9b"></video>
<video id="rtd9b"></video>
<dl id="rtd9b"></dl>
<output id="rtd9b"></output>
<dl id="rtd9b"><delect id="rtd9b"></delect></dl>
<noframes id="rtd9b"><output id="rtd9b"></output><video id="rtd9b"><output id="rtd9b"></output></video><video id="rtd9b"></video>
<video id="rtd9b"></video>
<dl id="rtd9b"></dl><dl id="rtd9b"></dl>
<video id="rtd9b"><output id="rtd9b"><font id="rtd9b"></font></output></video><video id="rtd9b"><dl id="rtd9b"><output id="rtd9b"></output></dl></video>
<noframes id="rtd9b"><video id="rtd9b"></video><meter id="rtd9b"><output id="rtd9b"><meter id="rtd9b"></meter></output></meter>
<output id="rtd9b"></output>
<video id="rtd9b"></video>
<dl id="rtd9b"></dl><dl id="rtd9b"></dl>
<video id="rtd9b"><dl id="rtd9b"></dl></video>
<video id="rtd9b"><delect id="rtd9b"></delect></video>
<video id="rtd9b"><output id="rtd9b"></output></video>
<dl id="rtd9b"><delect id="rtd9b"><meter id="rtd9b"></meter></delect></dl>
<dl id="rtd9b"></dl><video id="rtd9b"><output id="rtd9b"></output></video>
<video id="rtd9b"><dl id="rtd9b"></dl></video>
科研交流
您的位置>> 首 页 > 科研交流 > 学术交流 > 正文
学术交流

数学学院、所2019年系列学术活动(第78场):王志安 教授 香港理工大学

发表于: 2019-05-30 14:56  点击:

报告题目:Global dynamics of the Lotka-Volterra competition system with resource-dependent motion

报 告 人:王志安教授 香港理工大学
报告时间:2019614日 下午1530-1630
报告地点:数学楼第一报告厅
报告摘要:

In this talk, we shall discuss the global dynamics of the Lotka-Volterra competition system with resource-dependent diffusion and advection where the resource is determined by a dynamics equation. As we know,  such population model has been rarely considered before. We show that the system admits a unique classical solutions in two dimensions and the solutionwill converge to constant a semi-trivial steady state or coexistence steady state depending on the parameter values.

Our results indicate that "slower diffusion prevails" will not occur to the concerned model.

报告人简介:

王志安,香港理工大学教授。主要研究领域是生物数学的模型及其解法,已在J. Differential EquationJ. Mathematical BiologyMathematical  Models  and

Methods in Applied SciencesNonlinearitySIAM J. Applied Mathematics等国际知名数学杂志发表学术论文几十篇,SCI期刊DCDS-B编委。



彩之星彩票网